诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******
相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。
你或身边人正在用的某些药物,很有可能就来自他们的贡献。
2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
AI创新链产业链融合发展 赋能数字经济新时代《中国人工智能专利技术分析报告(2022)》发布******
2022年12月,国家工业信息安全发展研究中心、工信部电子知识产权中心发布《AI创新链产业链融合发展赋能数字经济新时代—中国人工智能专利技术分析报告(2022)》,这是中心连续第5年就中国人工智能专利技术发展情况发布报告。
在新一轮科技革命和产业变革的大背景下,人工智能创新链产业链“双链”融合是释放数字化叠加倍增效应、驱动数字经济智能化跃升、打造产业综合竞争优势的必然路径。《报告》基于人工智能高价值专利增强创新链活力和助力产业链升级的角度,对深度学习、智能云、计算机视觉、智能语音、自然语言处理等十大技术领域进行专利申请趋势和分布构成分析,从“创造力”“保护力”“运用力”“竞争力”“影响力”五大方面对人工智能创新主体进行专利创新评价,研究人工智能专利如何高效助力各类“智慧+”应用场景落地,并对未来新兴人工智能技术应用和专利布局趋势作出研判。
图1 人工智能创新链产业链融合发展图谱
《报告》对人工智能高价值专利如何为创新链产业链融合发展保障护航进行了定量和定性分析。从行业公认的能够直观体现高价值专利的几个因素来看,自2011年、2012年开始,人工智能领域的中国专利奖占比逐年提高、专利许可转让数量呈上升趋势、专利诉讼遍及多个应用场景,展现了高价值专利对技术产业应用相辅相成的走势。
十大基础技术领域的专利数量稳步增长,极大激发AI创新链活力。深度学习、智能云、计算机视觉、智能语音、自然语言处理、大数据、知识图谱、智能推荐、智能芯片、量子计算等智能技术构成了人工智能创新链技术底座,也是产业链应用的基础技术。在技术与政策双红利的推动下,2016-2021年深度学习专利申请年均复合增长率达到53%,对人工智能的引领作用开始逐步凸显;相比之下,智能语音、自然语言处理、大数据、知识图谱和智能推荐领域的专利申请呈现稳步增长的态势,其中2021年自然语言处理的专利申请量仅次于深度学习、智能云和计算机视觉,发展势头强劲;智能芯片和量子计算由于起步相对较晚,相关专利储备较少,仍处于技术加速积累的阶段。国内创新主体也纷纷展开专利布局,不断增强市场竞争实力。例如百度公司在深度学习、智能云和智能驾驶等多个领域继续保持领先优势,寒武纪、浪潮和华为在智能芯片领域展现了充分的专注度和科研实力,清华大学、浙江大学等高校也在计算机视觉和自然语言处理等领域投入更多研发资源,成为基础攻关的重要力量。
图2 AI创新链十大基础技术专利申请趋势和分布构成
AI创新主体展现积极创新面貌,中小企业为产业发展增添新力量。从创新主体的申请量排名上看,百度、腾讯、国家电网、华为位列前四,专利申请数量均突破10000件,是我国AI领域技术创新的主力军。从专利授权量上看,仍然是上述四家企业位居前列,且百度公司专利申请量和授权专利持有量均排名第一。此外,腾讯专利2017-2020年腾讯专利申请年均复合增长率高达70%,在AI领域前四创新主体中申请量增速排名第一。从授权专利占比上看,申请量排名第七的清华大学和第九的浙江大学,均以45%的授权专利占比排名前两位。作为技术创新的重要源泉和吸纳劳动力就业的重要载体,大量中小企业也积极涌入人工智能赛道,在创新链一侧,我国人工智能领域企业主体共申请专利超过110万件,中小企业专利贡献超过90%。从产业链看,AI技术在中小企业中的普及率超过40%,语音识别、智能制造等技术在中小企业应用广泛,助力中小企业升级改造和智能化应用。
图3 创新链前十创新主体专利申请量和授权量
AI核心技术领域高价值专利集聚明显,产学研合作稳步推进。当前,智能云和深度学习是高价值专利数量最多的两个领域,百度得益于更早地投入与布局,展现专利申请数量与质量同步提升的发展态势。其他创新主体也结合自身业务发展方向,在不同的基础技术领域进行了有针对性的布局,如国家电网在深度学习和大数据领域,浪潮集团在智能云,阿里巴巴在智能推荐,平安科技在自然语言处理和计算机视觉都保持着创新优势。高等院校在人工智能领域技术创新活跃,涌现了大量专利成果,并通过与企业成立联合实验室和技术研发中心等方式,加快产学研用协同创新进程。截至2022年9月,我国人工智能领域产学研联合申请专利数量超2万余件,其中发明专利占比约90%,整体呈上升趋势增长,产业应用较为广泛。
图4 中国AI创新主体高价值专利技术布局
图5 AI领域产学研联合申请专利发展趋势图
AI专利助力新兴应用场景落地,推动产业链转型升级。目前,人工智能创新链的产业化应用主要集中在智慧城市、智慧交通、智慧医疗、智慧金融、智慧工业和智慧教育等领域。从技术应用的成熟度来看,不同AI技术在不同场景的应用呈现出阶梯式发展的态势。智慧工业是当前各创新主体主要布局的技术应用场景,AI专利申请量达到65万余件,其次就是智慧金融,专利申请量为30万余件。其中也涌现出“海淀城市大脑”“灵医智惠AI医疗品牌”“智慧交通解决方案TrafficGo2.0”“普惠金融人工智能开放平台”等众多优秀实践案例,推动高端智能技术与行业的融合发展。
“智慧+”场景应用创造出更多产业增长点,新兴人工智能技术生成数字经济发展新动能。AI在城市、交通、医疗、教育及工业等场景的融合应用加速,不断催生新业态新模式新产业。以智慧工业为例,将工业互联网、人工智能等在内的智能制造新技术与工具,集成到工业生产流程中,正在引领我国工业数字化新生态。报告显示,截至2022年9月,我国智慧工业领域申请专利共计65万余件。百度公司以近9000件专利总数位居第一,国家电网位居第二,其余创新主体专利申请量差距不大,发展潜力较强,各创新主体在智慧工业领域的专利布局积极竞争,难以拉开较大差距。与此同时,基于人工智能的深度学习、内容生成,语音、视觉识别技术越来越成熟,以元宇宙和数字人技术为代表的新兴技术,也迎来了专利的快速积累阶段,百度、腾讯、华为等企业积极开展前沿专利布局,探索人机交互发展和应用,助力数字经济高质量发展。
图6 中国元宇宙专利主要申请人排名
图7 中国数字人专利技术申请-公开趋势
《报告》结合当前人工智能知识产权生态建设和全产业链专利布局情况,对产业高质量可持续发展提出总结与展望。人工智能是新一轮科技革命和产业变革的重要驱动力量,发展人工智能是支撑科技自立自强、实现高质量发展的重要战略。党的二十大报告提出,推动战略性新兴产业融合集群发展,构建新一代信息技术、人工智能、生物技术、新能源、新材料、高端装备、绿色环保等一批新的增长引擎。当前,人工智能技术与5G、云计算、大数据的融合发展已将成为推动数字经济发展的动能源泉,今后将进一步与其他数字技术相互碰撞出全新的科技驱动力。随着人工智能创新发展跨入新的历史阶段,专利申请总量突破百万件,专利申请趋势仍在快速增长,技术人才规模不断扩大,产业融合广泛深入,应当在底层关键技术突破、建设知识产权生态、大中小企业共同完善专利布局、开辟更广泛应用场景等方面发力,实现创新链与产业链的协同发展。